Pituitary Disorders

Pearls

Whitney Woodmansee M.D.
Director, Clinical Neuroendocrine Program
Brigham and Women's Hospital / Harvard Medical School
Boston, MA
July 21, 2012

Disclosures

- Eli Lilly and Company- consultant, advisory board member
- Pfizer – research funding
- Ipsen – research funding, advisory board member

Learning Objectives

Lecture is a general neuroendocrine review.
Goal is to discuss:
- Neuroendocrine physiology
- Diagnostic approach and management of pituitary disorders

Pituitary Gland

Anterior Pituitary
- Adenohypophysis
- 80% of the gland
- Derived from Rathke’s pouch (oral ectoderm)
- Comprised of 5 cell types
- Secretes 6+ neuropeptides
- Controlled by RH from the hypothalamus & feedback from target organs.

Posterior Pituitary
- Neurohypophysis
- 20% of the gland
- Direct extension of the hypothalamus.
- Terminal axons from SON and PVN of hypothalamic neurons
- Hormone produced in hypothalamus, stored in pituitary.

Pituitary Physiology

Anterior Pituitary
- Hypothalamic releasing hormone
- Produces anterior pituitary hormone
- Target organ

Posterior Pituitary
- Hypothalamus
- Supraoptic nc
- Paraventricular nc
- Axons
- Posterior pituitary
- AVP
- Oxytocin

Approach to Pituitary Disorders

Evaluate:
- Mass effects
- Pituitary hyperfunction
 - “Suppression tests”
- Pituitary hypofunction
 - “Stimulation tests”
Pituitary Disorders

- **Anterior Pituitary**
 - Sellar Masses
 - Pituitary Adenoma
 - Mass effect
 - Hyperfunction
 - Hypofunction
 - Apoplexy
 - Hypopituitarism

- **Posterior Pituitary**
 - Overproduction of AVP
 - Syndrome of Inappropriate Antidiuretic Hormone Secretion (SIADH)
 - Underproduction of AVP
 - Diabetes Insipidus
 - Central (pituitary)
 - Nephrogenic

History:
- Question regarding endocrine hypo or hyper function. Think of anterior & posterior pituitary function.

- **Hypofunction**
 - Hypothyroidism
 - Hypogonadism
 - Adrenal Insufficiency
 - GH Deficiency
- **Hyperfunction**
 - Hyperthyroidism
 - Prolactin excess
 - GH excess
 - Neurological symptoms: HA, visual disturbance.

Patient Evaluation

- **History:**
 - Question regarding endocrine hypo or hyper function. Think of anterior & posterior pituitary function.

- **Deficiency:**
 - Hypothyroidism: dry skin, puffy, delayed DTR's
 - Hypogonadism: loss of body hair, testicular softness.
 - Adrenal insufficiency: low BP. (Recall no hyperpigmentation as with Addison's)
 - GH deficiency: central adiposity

- **Excess:**
 - Hyperthyroidism: hypermetabolic, soft skin, tremor, lid lag, increased DTR's, tachycardia
 - Hypergonadism: Not much to see.
 - Cortisol excess: Cushings' syndrome features.
 - GH excess: Acromegaly features.
 - Prolactin excess: hypogonadism, galactorrhea

Patient Evaluation

- **Physical Exam:** Look for clues of hormone status.

 - **Deficiency:**
 - Hypothyroidism: dry skin, puffy, delayed DTR's
 - Hypogonadism: loss of body hair, testicular softness.
 - Adrenal insufficiency: low BP. (Recall no hyperpigmentation as with Addison's)
 - GH deficiency: central adiposity

 - **Excess:**
 - Hyperthyroidism: hypermetabolic, soft skin, tremor, lid lag, increased DTR's, tachycardia
 - Hypergonadism: Not much to see.
 - Cortisol excess: Cushings' syndrome features.
 - GH excess: Acromegaly features.
 - Prolactin excess: hypogonadism, galactorrhea

Patient Evaluation

- **Physical Exam (continued):**
 - Good neurologic exam:
 - look for cranial nerve palsies
 - assess visual acuity.
 - Visual fields by confrontation.

Patient Evaluation

- **Differential Diagnosis of Sellar/Parasellar Lesions**

<table>
<thead>
<tr>
<th>Benign Tumors</th>
<th>Granulomatous, Infectious, and Inflammatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary adenoma (carcinoma)</td>
<td>Lymphohistiocytic hypophysitis</td>
</tr>
<tr>
<td>Meningioma</td>
<td>Abscess</td>
</tr>
<tr>
<td>Cell Rest Tumors</td>
<td>Sarcoïdiosis</td>
</tr>
<tr>
<td>Cranopharyngioma</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Rathke's cleft cyst</td>
<td>Eosinophilic granulomatosis</td>
</tr>
<tr>
<td>Epidermoid</td>
<td>Mycosis</td>
</tr>
<tr>
<td>Chordoma</td>
<td>Metastatic Tumors</td>
</tr>
<tr>
<td>Lipoma</td>
<td>Vascular Lesions</td>
</tr>
<tr>
<td>Colloid cyst</td>
<td>Hematologic Malignancies</td>
</tr>
<tr>
<td>Primitive Germ Cell Tumors</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Germinoma</td>
<td>Empty sella syndrome</td>
</tr>
<tr>
<td>Teratoma</td>
<td>Acrochordan syndrome</td>
</tr>
<tr>
<td>Dysgerminoma</td>
<td></td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td></td>
</tr>
<tr>
<td>Epidermoidoma</td>
<td></td>
</tr>
<tr>
<td>Astrocytoma</td>
<td></td>
</tr>
</tbody>
</table>
Pituitary Adenomas: Epidemiology

- Pituitary adenomas are the 3rd most common brain tumor.
- They account for 10-15% of all intracranial tumors.
 - MRI studies 14.4%
 - Autopsy series 12-22.5%
- They are classified according to size.
 - Microadenomas - < 10mm
 - Macroadenomas - > 10 mm

Pituitary Tumorigenesis

- Chromosomal lesions
- Oncogene Activation
- Aberrant Signal Transduction
- Aberrant Growth Factors
- Loss of Tumor Suppressors

Case 1-1

- 24 yr old woman G2P2, menses never resumed after d/c OCP’s. ROS: HA’s, no visual or other neuro c/o. + fatigue, depression, and cold intolerance. Can’t seem to lose weight she gained with last pregnancy. + galactorrhea x 6 mos.
- Meds: none
- PE: normal. What should you look for on PE? What is the differential diagnosis?

Case 1-2

Labs
- E2 11; LH 6; FSH 5
- IGF-1 nl 183, GH 1
- α SU 0.8 (nl)
- cortisol 8
- FT4 1, TSH 1.5
- Prolactin 283
- What is the single most important test to order to exclude a physiologic cause of elevated prolactin?
 - Hematocrit
 - Ferritin
 - Pregnancy test
 - Chest Xray

Labs
- E2 11; LH 6; FSH 5
- IGF-1 nl 183, GH 1
- α SU 0.8 (nl)
- cortisol 8
- FT4 1, TSH 1.5
- Prolactin 283
- What is the single most important test to order to exclude a physiologic cause of elevated prolactin?
 - Hematocrit
 - Ferritin
 - Pregnancy test
 - Chest Xray
Case 1-3

Labs
- E2 11; LH 6; FSH 5
- IGF-1 nl 183, GH 1
- α SU 0.8 (nl)
- HCG negative
- cortisol 8
- FT4 1, TSH 1.5
- Prolactin 283

- How do you interpret the lab values?
- What is the next step?
- What is the diagnosis?
- What are the treatment options?

Clinical Presentation of Hyperprolactinemia

- Galactorrhea **
- Hypogonadism **
 - Amenorrhea / menstrual irregularities
 - Infertility
 - Erectile dysfunction
 - Growth arrest / delayed puberty
- Hirsutism
- Gynecomastia
- Mass effects if tumor is large

DDx: Hyperprolactinemia

- Pregnancy (Normal) - Need to rule out in women.
- Drugs - Take a good history.
 - DA depletion or antagonists-usually psychoactive
 - Estrogens
- Primary Hypothyroidism - Check TSH
- Pituitary tumor (prolactinoma) - Pituitary MRI
- Neurogenic - chest wall lesion, suckling
- Cirrhosis
- Ectopic production - ovarian tumors
- Idiopathic

Prolactinomas: Treatment

Treatment Options:
Medical Therapy with DA agonists *****
- Bromocriptine, Cabergoline

- Micros: 90-96% response, Macros: 60-75% response

Transsphenoidal resection
- 36-53% cure rate for micros, lower for macros.
- Up to a 40% recurrence rate.

Radiation
- Works in a minority of patients over a long time.

Case 2-1

57 yr old male with multiple medical problems who recently presented to PCP with SOB, CP. Found to have new onset CHF, hypoxia
- LVEF 25%, cardiac cath normal.

PMH: Rheumatoid arthritis, gout, nephrolithiasis, colon polyps, carpal tunnel syndrome, COPD.

Meds: Captopril, allopurinol, ASA, prednisone 5mg/d, methotrexate.

Case 2-2

PE: 126/88 P82.

Neck: 25g thyroid.

Lungs: bibasilar rales. RRR +S3

Abd: obese o/w normal.

Ext: Large doughy hands. Size 13 feet, wide. No active joint inflammation. Multiple skin tags.

What diagnosis are you considering?
What lab tests would you like?
Clinical Features of Acromegaly

- Soft tissue hypertrophy
- Arthritis / Carpal tunnel syndrome
- Increased hand, head, foot size.
- Organomegaly
 - Cardiomegaly with CHF
- Metabolic Disturbances
 - Diabetes Mellitus
- Obstructive Sleep Apnea
- Colon polyps/cancer
- Increased mortality

Case 2-3

Labs:
GH 2.4; IGF-1 985 (high)
FT4 = 0.7 (normal 0.7-2.7), TSH 0.4
α SU 3.1 (high)
FSH 11, LH 7.4, testosterone 234 (low normal)
prolactin 7 (normal)

What diagnosis are you considering now?
Would you order any radiologic tests at this time?

Case 2-4

What test can be used to confirm GH hypersecretion?
A. Midnight salivary GH
B. Oral glucose tolerance test for GH suppression
C. Urinary IGF-1
D. Serum IGFBP-3

Case 2-4

What test can be used to confirm GH hypersecretion?
A. Midnight salivary GH
B. Oral glucose tolerance test for GH suppression
C. Urinary IGF-1
D. Serum IGFBP-3

Acromegaly: Treatment

- Surgery
- Medical Therapy
 - Somatostatin Analogs
 - Octreotide LAR
 - Lanreotide
 - Pegvisomant
- Radiation
 - Conventional
 - Radiosurgery

Goal is “biochemical cure”
Normal IGF-I
Normal GH suppression

Case 3-1

- 50 yr old woman referred to evaluate weight gain.
Reports rapid 50lb wt gain.
No HA, visual, neuro complaints.
“Dr. you must do something about this weight!!!”
PMH: hypothyroidism, HTN, “borderline DM.”
FMH: obesity, thyroid disease
Meds: LT4, lisinopril, ASA

PE: 176/90 P72
Moon face, dorsocervical and supraclavicular fat pads
Thyroid 30g pebbly
CTA B, RRR
Central obesity
Abd: “purple striae
1+ edema
Neuro: normal

What would you recommend?
Clinical Features of Cushing’s Syndrome

- Central obesity
- Skin changes
- Hirsutism
- Menstrual irregularities
- Hypertension, CAD
- Muscle weakness
- Osteoporosis
- Mood disturbances

Case 3-1

You are concerned about Cushing’s syndrome in this patient. What is the best first step in evaluating this patient?

A. Screen for hypercortisolism
B. Obtain a pituitary MRI
C. Obtain a CT scan of the adrenal glands
D. Perform inferior petrosal sinus sampling to determine if the source of excess cortisol is an ACTH producing pituitary adenoma

Cushing’s Syndrome

Step 1: Document syndrome of hypercortisolism
- Screening tests for hypercortisolism include:
 - 24 hour urine free cortisol
 - Late night salivary cortisol levels
 - 1mg overnight dexamethasone test

Step 2: Determine whether it is ACTH dependent or independent.

Step 3: Localize tumor and remove.

Thyrotropinomas

- Very rare (approx. 0.5-1% of pituitary adenomas)
- Clinical presentation:
 - Hypothyroidism, goiter
 - Patients often treated previously with thyroidectomy / I131
 - 70% present with macroadenomas
- Diagnosis:
 - Elevated T4, T3
 - Inappropriately NORMAL or elevated TSH
- Treatment:
 - Surgery (treatment of choice), Somatostatin analogs

Nonfunctioning Adenomas

- Appear clinically inactive.
- Often secrete α subunit, β subunit or intact gonadotropins.
- One third of all pituitary tumors.
- Often present with mass effect symptoms only and no evidence of hormonal overactivity.
- Some patients with large tumors present with panhypopituitarism.
- Treatment of choice is surgery
Pituitary Adenoma

Therapeutic considerations

- Treating symptoms related to mass effects
 - Restoration or preservation of vision
 - Neurologic improvements – cranial nerves, headaches
- Correcting pituitary hyperfunction.
 - Aim for biochemical cure
 - Medical therapy for hormonal replacement

Hypopituitarism

Management

- Treatment based on correcting hormonal deficiencies.
 - Thyroid - levothyroxine (** remember TSH cannot guide Rx**)
 - Adrenal - HCC or prednisone. Use lowest dose possible.
 - Gonad - Men require testosterone, women require HRT (OCP)
 - Growth hormone - Can treat with rhGH.
 - Prolactin - no replacement available or required.
 - Posterior pituitary – Desmopressin (DDAVP)
- Medical Alert Jewelry

Pituitary Disease

Summary

Main “take home” messages:

1. When evaluating patients with pituitary disorders, let pituitary physiology be your guide. Evaluate:
 - Mass effects (headache, visual dysfunction)
 - Pituitary hyperfunction
 - GH (Acromegaly)
 - ACTH (Cushing’s disease – hypercortisolism)
 - Prolactin (galactorrhea, menstrual disorders, erectile dysfunction)
 - TSH (hyperthyroidism)
 - Pituitary hypofunction – all hormonal systems
2. Treatment is aimed at restoring normal pituitary function and can include: surgery, hormonal replacement, medications

General References

- Best Pract Res Clin Endocrinol Metab. 2009 Oct;23(5): - This volume has multiple chapters on various pituitary topics.