Pulmonary Function Testing: Concepts and Clinical Applications

David M Systrom, MD
Pulmonary and Critical Care Medicine

Potential Conflict Of Interest
• Nothing to disclose pertinent to this presentation

Objectives
• Understand common indications for testing
• Review components of PFTs
• Recognize patterns of PFT abnormalities in disease
• Gain familiarity with interpretation strategies

Rationale: Why Test?
• Evaluate symptoms/signs of respiratory disease
• Monitor course of disease and response to therapy
• Prognosticate
• Screen patients at risk
 – pre-operative
 – systemic disease or systemic therapy with known pulmonary effects
 – occupational exposure
• Evaluate disability

Components of Pulmonary Function Testing
• Routine
 – Exhaled volume and flow rates -spirometry
 – Lung volumes-helium dilution or plethysmography
 – Diffusion characteristics -diffusion capacity
 – Airway reactivity-bronchodilator response or methacholine challenge
 – Oxygenation/Ventilation-pulse oximetry or arterial blood gas analysis

Components of Pulmonary Function Testing
• Specialized
 – Respiratory muscle strength-maximal inspiratory and expiratory pressures (MIPs and MEPs)
 – Heart-lung interaction-integrated cardiopulmonary exercise testing
 – Novel assays of exhaled gas
Spirometry

- Most basic and widely used formal pulmonary function test
- Easily performed in the office setting
- Part of the initial evaluation of patients with undiagnosed chest complaints
- Sensitive and specific test for the presence of airflow obstruction as may occur in asthma, COPD, bronchiectasis
- Less specific test for restrictive lung disease

63 y/o Man with Dyspnea

actual % pred.
FVC 1.56 66
FEV₁ 0.66 36
FEV₁/FVC 0.42 56
PEFR 1.56 31
FEF_{25-75} 0.26 16

A. Obstruction due to the reduced FEF_{25-75}
B. Restriction due to the reduced FVC
C. Obstruction due to the reduced FEV₁/FVC
D. Inadequate effort on the basis of marked expiratory coving of the flow-volume loop

Spirometry measures inhaled and exhaled gas volumes and gas flows during a forced vital capacity maneuver

Definitions and Terms

- FEV₁ - forced expiratory volume in the first second
- FVC - forced vital capacity
- FEV₁/FVC-ratio of the FEV₁ to FVC (as a %)
- FEF_{25-75} - average forced expiratory flow during the mid portion of the FVC
- PEFR - peak expiratory flow rate

Definition of Normal Values

- Predicted values are standardized to age, sex, height, and race; measured values are expressed as a percentage of predicted
- Current ATS guidelines suggest that values below the 95% CI be considered abnormal
- This recommendation has not been universally adopted
22 y/o Woman with Wheezing and Chest Tightness

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>% pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>2.28</td>
<td>75</td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>1.40</td>
<td>57</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC</td>
<td>0.62</td>
<td>78</td>
</tr>
<tr>
<td>PEFR</td>
<td>3.23</td>
<td>56</td>
</tr>
<tr>
<td>FEF<sub>25-75</sub></td>
<td>0.74</td>
<td>29</td>
</tr>
</tbody>
</table>

A. Obstruction due to the reduced PEFR
B. Restriction due to the reduced FVC and FEV₁
C. Obstruction on the basis of marked expiratory coving of the flow-volume loop
D. Obstruction due to the reduced FEV₁/FVC

Spirometry- Obstructive pattern

- Limitation to expiratory flow characterized by reduced FEV₁, relatively preserved FVC, reduced FEV₁/FVC
- Emphysema
 - loss of elastic recoil
- Chronic bronchitis
 - mucous hypersecretion
 - mucosal thickening
 - bronchospasm
- Asthma
 - smooth muscle contraction
 - airway edema
- Bronchiolitis
 - mucosal inflammation

22 y/o Woman with Wheezing and Chest Tightness

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>% pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>2.28</td>
<td>75</td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>1.40</td>
<td>57</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC</td>
<td>0.62</td>
<td>78</td>
</tr>
<tr>
<td>PEFR</td>
<td>3.23</td>
<td>56</td>
</tr>
<tr>
<td>FEF<sub>25-75</sub></td>
<td>0.74</td>
<td>29</td>
</tr>
</tbody>
</table>

- What should be ordered next?
 A. diffusion capacity
 B. post-bronchodilator spirometry
 C. methacholine challenge
 D. ambulatory peak flow monitoring
 E. allergen skin testing

Bronchodilator Testing

- Assessment of lung function (spirometry) pre- and 15 minutes post- administration of a bronchodilator
 - document reversible airflow obstruction
 - asthma diagnosis
 - prognosticate in COPD
 - may imply an increased likelihood of response to CS
 - immediate feedback to patients may increase compliance
 - lack of an acute response does not imply lack of response to long-term therapy
Bronchodilator Testing

- When to test
 - suspected new diagnosis of obstructive lung disease
 - asthma, COPD, emphysema, bronchiolitis, bronchiectasis
 - to assess efficacy of treatment
 - corticosteroids and long-acting bronchodilators (salmeterol) may alter bronchodilator response

Bronchodilator Testing

Positive response:
12% increase in FEV₁ or FVC, and an increase of 200 cc

22 y/o Woman - Bronchodilator Response

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>% pred</th>
<th>post</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>2.28</td>
<td>75</td>
<td>2.45</td>
<td>7</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.40</td>
<td>57</td>
<td>1.63</td>
<td>16</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.62</td>
<td>78</td>
<td>0.66</td>
<td>6</td>
</tr>
<tr>
<td>PEF</td>
<td>3.23</td>
<td>56</td>
<td>5.03</td>
<td>55</td>
</tr>
<tr>
<td>FEF₂₅₋₇₅</td>
<td>0.74</td>
<td>29</td>
<td>0.94</td>
<td>27</td>
</tr>
</tbody>
</table>

38 y/o Man with Episodic Cough

- Close friend recently hospitalized with asthma
- Spirometry:
 - actual % pred.
 - FVC: 4.99 98
 - FEV₁: 4.09 97
 - FEV₁/FVC: 0.82 100
 - PEF: 8.45 90
 - FEF₂₅₋₇₅: 3.45 78
- What should be ordered next to r/o asthma?
 - A. diffusion capacity
 - B. post-bronchodilator spirometry
 - C. methacholine challenge
 - D. ambulatory peak flow monitoring
 - E. allergen skin testing

38 y/o Man with Episodic Cough

- Close friend recently hospitalized with asthma
- Spirometry:
 - actual % pred.
 - FVC: 4.99 98
 - FEV₁: 4.09 97
 - FEV₁/FVC: 0.82 100
 - PEF: 8.45 90
 - FEF₂₅₋₇₅: 3.45 78
- What should be ordered next to r/o asthma?
 - A. diffusion capacity
 - B. post-bronchodilator spirometry
 - C. methacholine challenge
 - D. ambulatory peak flow monitoring
 - E. allergen skin testing

Bronchial Challenge Testing

- Bronchial challenge testing detects airway hyper-reactivity as may occur in asthma, COPD, and bronchiectasis
- Methacholine is administered by nebulizer in increasing concentrations
 - spirometry is measured at baseline and after each concentration.
 - the degree of airflow obstruction present after any given concentration is a reflection of airway reactivity
 - patients with hyper-reactive airways will bronchoconstrict at lower concentrations

Hyper-reactive

FEV₁ (% baseline)

PC20 = 6.2 mg/ml

Non-reactive

FEV₁ (% baseline)

PC20 = ? mg/ml
Bronchial Challenge Testing

- The concentration required to induce a 20% fall in FEV₁ (PC₂₀) is reported. < 8 mg/ml is hyper-reactive
 - Airway hyper-reactivity may be present in ~15% of normal
 - A negative methacholine challenge excludes asthma in the absence of concurrent therapy with:
 - corticosteroids (6 wks)
 - leukotriene modifiers (48 hours)
 - long-acting bronchodilators (48 hours)
 - theophylline (1 week)
 - cromolyn (1 week)

Indications

- suspicion of asthma with normal spirometry and a negative bronchodilator response
- chronic cough
- nocturnal cough
- episodic chest tightness
- unexplained exercise intolerance
- recurrent “bronchitis”

30 y/o Man with Dyspnea and Cough

Spirometry:

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>% pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>1.12</td>
<td>19</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.04</td>
<td>21</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.93</td>
<td>115</td>
</tr>
<tr>
<td>PEFR</td>
<td>5.75</td>
<td>72</td>
</tr>
<tr>
<td>FEF₂₅₋₇₅</td>
<td>2.2</td>
<td>48</td>
</tr>
</tbody>
</table>

A. Suggested obstruction due to the reduced PEFR
B. Restriction due to the increased FEV₁/FVC
C. Obstruction on the basis of the reduced FEV₁
D. Suggested restriction due to the reduced FEV₁ and FVC

Spirometry: Restrictive pattern

- Reduction in gas volume of the chest characterized by symmetric reduction in FEV₁ and FVC; FEV₁/FVC is preserved
 - reduced chest wall compliance
 - loss of parenchyma (i.e. s/p resection)
 - increased parenchymal stiffness
 - respiratory muscle weakness
- Spirometry can measure only exhaled gas, not the total gas in the chest; it can only suggest a diagnosis of restriction

Absolute Lung Volumes

- After complete exhalation, residual air remains in the lung (RV)
- Without quantification of the RV, the total volume of gas in the chest (TLC) cannot be determined
- Direct measurement of lung volumes is necessary for the formal diagnosis of restriction
Measurement of the residual volume (RV)

Helium dilution

Plethysmography

Significance of the TLC and RV

- A reduction in TLC defines restriction which may have only been suggested by a reduced FVC.
- A normal TLC excludes restriction which may have been suggested by a reduced FVC measured by spirometry.
- An elevated RV indicates gas trapping as can be seen in severe obstructive lung disease.

30 y/o Man with Dyspnea and Cough

Spirometry:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual</th>
<th>% Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>1.12</td>
<td>19</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.04</td>
<td>21</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.81</td>
<td>115</td>
</tr>
<tr>
<td>PEF</td>
<td>5.75</td>
<td>72</td>
</tr>
<tr>
<td>FEF₂₅-₇₅</td>
<td>2.2</td>
<td>48</td>
</tr>
<tr>
<td>TLC</td>
<td>2.09</td>
<td>28</td>
</tr>
</tbody>
</table>

Suggested restriction due to the reduced FEV₁ and FVC

Confirmed restriction due to the reduced TLC

Diffusing Capacity (D_L) quantifies the transfer of oxygen from alveolar gas to the red cell

- The quantity and rate of oxygen transfer depends on:
 - Area (A) of the alveolar-capillary membrane
 - Thickness (T)
 - Driving pressure (ΔPo₂)

\[
D_L = \frac{A \times \Delta P_{O_2}}{T}
\]

Abnormalities in D_L-CO

- Increased D_L-CO
 - supine position
 - polycythemia
 - alveolar hemorrhage
 - left-to-right shunt
 - early CHF
 - asthma

- Decreased D_L-CO
 - decreased area
 - emphysema, a/p resection, pulmonary emboli, HTN
 - anemia
 - increased thickness
 - pulmonary fibrosis, pneumoconiosis, sarcoid, drug-induced lung disease, CHF
 - increased CO back-pressure
 - cigarette smoking

Abnormalities in TLC/D_L-CO

<table>
<thead>
<tr>
<th>Parameter</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>1.12 (19%)</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.04 (21%)</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.93 (100%)</td>
</tr>
<tr>
<td>TLC</td>
<td>2.10 (28%)</td>
</tr>
<tr>
<td>D<sub>L</sub>-CO/V<sub>L</sub></td>
<td>15 (43%)</td>
</tr>
</tbody>
</table>

A. Emphysema
B. Interstitial lung disease
C. Diaphragmatic dysfunction
D. Primary pulmonary hypertension
Abnormalities in TLC/D_LCO

- **FVC:** 1.12 (19%)
- **FEV₁:** 1.04 (21%)
- **FEV₁/FVC:** .93 (100%)
- **TLC:** 2.10 (28%)
- **D_LCO/V_A:** 15 (43%)

A. Emphysema
B. Interstitial lung disease
C. Diaphragmatic dysfunction
D. Primary pulmonary hypertension

Neuro-muscular weakness
or
Thoracic deformity

Interpretation Algorithm

Acceptable Spirogram

- ? FEV₁/FVC ratio low
- Obstruction
 - Yes
 - No
 - No Obstruction

- ? FVC low
 - Yes
 - No
 - No
 - Yes

- Hyperinflation vs. Pure obstruction
 - Further testing*
 - Yes
 - No
 - No

- ? Reversible with β-agonist/Incr NO
 - Yes
 - No

Prob. Restriction Normal

- **FEV₁/FVC:** .86 (100%)
- **D_LCO/V_A:** 24 (110%)

Neuro-muscular weakness or Thoracic deformity

Summary

- Pulmonary function testing is an essential component of the evaluation of patients with respiratory complaints.
- Spirometry can document obstruction (through the FEV₁/FVC ratio) and suggest restriction.
- Novel measures of exhaled gas may assist in the diagnosis of asthma.
- Lung volumes and D_LCO are indicated to diagnose and differentiate restrictive and vascular abnormalities.