PULMONARY EMBOLISM, DVT, ANTICOAGULATION
Samuel Z. Goldhaber, MD
Director, VTE Research Group
Cardiovascular Division
Brigham and Women’s Hospital
Professor of Medicine
Harvard Medical School
July 17, 2011

LEARNING OBJECTIVES
• VTE leads to CTEPH and PTS
• Rapid/Accurate Risk Stratification
• Selection of Parenteral Anticoagulant
• Warfarin Pharmacogenetics: TTR>70%
• Rivaroxaban monotherapy
• Fibrinolysis; Filters; Embolectomy
• Optimal Duration of Anticoagulation
• Aspirin: Prevention of Recurrent VTE

ICOPER CUMULATIVE MORTALITY
17.5%
Days From Diagnosis
(Lancet 1999; 353: 1386-1389)

CTEPH PATHOPHYSIOLOGY
(Piazza G, Goldhaber SZ. NEJM 2011; 364: 351)

DISCLOSURES
Research Support:
Eisai; EKOS; Johnson & Johnson, Sanofi-Aventis

Consultant:
Baxter; Boehringer-Ingelheim; BMS; Daiichi; Eisai; Merck; Pfizer; Portola; Sanofi-Aventis

69 y.o. WOMAN:
UNPROVOKED BILATERAL PE

Right lung with PE
Left lung with PE
POST THROMBOTIC SYNDROME

- Edema
- Hyperpigmentation
- Venous ulcer
- Skin induration
- Venous ectasia

CHEST ACCP GUIDELINES
2012: PREVENTING PTS

We suggest use of compression stockings (Grade 2B) for 2 years.

CHEST 2012; 141(2)(Suppl):e419S–e494S

ATTRACT TRIAL (N=692): (ILIO)FEMORAL DVT

STUDY ENROLLMENT
PRE-RANDOMIZATION PROCEDURES
RANDOMIZATION (1:1 Ratio)
CONTROL ARM
PCDT ARM
LONG-TERM TREATMENT
FOLLOW-UP

CARDIOVASCULAR RISK FACTORS AND VTE
(N=63,552 meta-analysis)

RF
- Obesity 2.3
- Hypertension 1.5
- Diabetes 1.4
- Cigarettes 1.2
- High Cholesterol 1.2

(Ageno W. Circulation 2008; 117: 93-102)

COMMON PATHOPHYSIOLOGY: VTE AND ATHEROSCLEROSIS

DEFINITIONS OF PE:
AHA PE Guidelines 2011

- Massive PE: sustained hypotension, pulselessness, or persistent bradycardia
- Submassive PE: RV dysfunction or myocardial necrosis, without hypotension
- Low Risk PE: no markers of adverse prognosis

(Ageno W. Circulation 2008; 117: 93-102)

(Piazza, Goldhaber. Circulation 2010;121: 2146)
RISKS FOR POOR PROGNOSIS

1. Elevated biomarkers (troponin)
 (European Heart J 2010; 31: 1836)
2. RV volume and pressure overload: enlargement/ hypokinesis:
 CT—(JACC Cardiovasc Imaging 2011; 4: 841-849)
 ECHO—(Circulation 2010;122: 1124)
3. “Weekend Effect”

RV/LV VOLUME RATIO

\[\text{RVV/ LVV} = 1.6 \]

(HR 30-day death=6.5 for ratio > 1.2)

RV DYSFUNCTION/ TN ELEVATION COMBO in PE: PROGNOSIS
(n=1,273)

Stein et al. Am J Cardiol 2010; 106: 558-563

SUBMASSIVE PE: INCREASED RV AND DIASTOLIC PRESSURE

Impact of RV Dysfunction on PE

Cumulative Mortality

Days from Diagnosis

RV Hypokinesis = 20.9%

Normal RV Function = 14.8%

WEEKEND IMPACT: MORTALITY RATE

(Nanchal R, et al. CHEST 2012; epubl March 29)
Clinical evaluation
- Anatomic size of PE
- RV size/ function
- Cardiac biomarkers

Risk Stratify
- Low Risk
 - Anticoagulation Alone (Basic)
- High Risk
 - Anticoagulation + Lysis/Embolectomy (Advanced)

Low Risk
- Anticoagulation + Lysis/Embolectomy

High Risk
- Anticoagulation Alone

PARENTERAL ANTICOAGULATION AS A “BRIDGE” TO WARFARIN
1. **Unfractionated heparin**: target PTT between 60 to 80 seconds
2. **Low molecular weight heparins**: enoxaparin, dalteparin, tinzaparin
3. **Fondaparinux**
4. **Direct thrombin inhibitors (HIT)**: argatroban, lepirudin, bivalirudin

WHICH PARENTERAL ANTICOAGULANT SHOULD BE SELECTED?
1. **Unfractionated heparin**: use if patient might require thrombolysis, embolectomy, or IVC filter
2. **Low molecular weight heparins** or **fondaparinux**: use for patients only requiring anticoagulation
3. **Direct thrombin inhibitors (HIT)**: use for confirmed or suspected HIT

Warfarin will survive due to:
1) Excellent efficacy
2) Low Cost ($4/month; $10/3 mos)
3) Long Track Record (1954)
4) Centralized Anticoagulation Clinics that maintain TTRs > 60%
5) Rapid turnaround genetic testing (CoumaGen-II. Circ 2012; March 19)
6) Point-of-care self-testing
7) INR Testing q 12 weeks if stable (CHEST 2012; 141: (Suppl) e153S)

WARFARIN PHARMACOGENOMICS
1. Cytochrome P450 2C9 genotyping identifies mutations associated with impaired warfarin metabolism.
2. Vitamin K receptor polymorphism testing can identify whether patients require low, intermediate, or high doses of warfarin.

(Schwartz Ul. NEJM 2008; 358: 999)

COUMAGEN-II: PG DOSING ACHIEVES A TTR OF 71%

(Circulation 2012; epub March 19)
TWO NIH-SPONSORED TRIALS ARE UNDER WAY

- Clinical Nomograms versus Rapid Turnaround Pharmacogenetic Nomograms for warfarin dosing
- “COAG” (N=1,238); “GIFT” (N=1,600)
- Stay tuned for results in 2014.

COMPARISON OF NEW ANTICOAGULANTS WITH WARFARIN

<table>
<thead>
<tr>
<th>Features</th>
<th>Warfarin</th>
<th>New Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Slow</td>
<td>Rapid</td>
</tr>
<tr>
<td>Dosing</td>
<td>Variable</td>
<td>Fixed</td>
</tr>
<tr>
<td>Food effect</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Drug interactions</td>
<td>Many</td>
<td>Few</td>
</tr>
<tr>
<td>INR Monitoring</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Half-life</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Antidote</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

SITES OF ACTION

Steps in Coagulation Coagulation Pathway Drugs

Initiation

Fibrin formation

(Fibrinogen) → Fibrin

(Rivaroxaban) → Apixaban → Edoxaban → Betrixaban → Dabigatran

(Rivaroxaban) → TF/VIa → Xa → IXa → VIIIa → X

Dabigatran (Hankey GJ and Eikelboom JW. Circulation 2011;123:1436-1450)

RIVORAXABAN VS. ENOX/WARFARIN FOR DVT/PE TREATMENT

“EINSTEIN”

(NEJM 2010; 363: 2499-2510) [NEJM 2012; 366: 1287-1297]

EINSTEIN DVT/PE PROGRAM

EINSTEIN-DVT (Confirmed DVT without PE)

- Rivaroxaban 15 mg BID for 3 weeks; then 20 mg once daily

EINSTEIN-PE (Confirmed PE without DVT)

- Enoxaparin BID > 5 Days + VKA to target INR = 2.5 (range 2-3)

Primary Outcome:

Symptomatic recurrent VTE

(R(EINSTEIN-DVT. NEJM 2010; 363: 2499)

Immediate initiation with rivaroxaban; No parenteral anticoagulant given.

“clinical equipoise”; 1 of 4: provoked DVT.

(N=2,449)

(Einstein PE. NEJM 2012; 366: 1287-1297)

(N=1,196)
CHEST ACCP GUIDELINES 2012: DVT/PE (9TH EDITION)

For acute DVT or PE, we recommend initial parenteral anticoagulation (Grade 1B) or anticoagulation with rivaroxaban.

CHEST 2012; 141(2)(Suppl):e419S–e494S

PE PATHOPHYSIOLOGY

RV Pressure Overload → RV Wall Tension
RV Dysfunction → RV Ischemia or Infarction
LV Preload → Coronary Perfusion
LV Cardiac Output → Systemic Pressure

(Vascular Medicine 2010; 15: 419-428)

ADVANCED VTE THERAPIES

• PE thrombolysis with TPA (Piazza G, Goldhaber SZ. Vasc Med 2010; 15: 419-428)
• Catheter-based reperfusion for PE (Kucher N. Circulation 2011; 124: 2139-2144)
• IVC filter (Stein PD. Am J Med 2011; 124: 655-661)
• Surgical embolectomy (Stein PD. Am J Med 2012; 125: 471)

“PROMISE” OF THROMBOLYSIS

• Reverse right heart failure (reduce mortality)
• Reduce RV pressure overload
• Prevent release of serotonin
• Dissolve leg/ pelvic thrombus in situ (reduce recurrent PE)
• Improve capillary blood flow (reduce CTEPH)
THROMBOLYSIS IN PE: RAPID ANGIOGRAPHIC IMPROVEMENT

THROMBOLYSIS IN PE: RAPID RV AND ECHOCARDIOGRAPHIC IMPROVEMENT

USE OF LYTIC THERAPY IN UNSTABLE PE

LYTIC THERAPY AND MORTALITY: UNSTABLE PE

FIBRINOLYSIS FOR PE: AHA PE Guidelines 2011

- **Massive PE**: with acceptable risk of bleeding complications
- **Submassive PE**: severe RV dysfunction, or major myocardial necrosis, or worsening respiratory insufficiency, with low risk of bleeding

(Circulation 2011; 123: 1788-1830)
CATHETER TECHNIQUES
“Pharmacomechanical”
- Mechanical fragmentation
- Clot pulverization (rotational)
- Hydrodynamic (AngioJet®)
- Lysis plus ultrasound (EKOS®)
- Pulse spray low-dose lytic agent
- PA balloon dilatation/stenting
(Kuo WT et al. JVIR 2009; 20: 1431-1440)

ULTRASOUND THROMBOLYSIS
The premise: Use of low-power ultrasound energy loosens fibrin strands, speeds thrombolysis, and facilitates reduction in fibrinolytic drug dose.

EKOS® DRUG DELIVERY CATHETER

SURGICAL EMBOLECTOMY AT BWH: SURGEON’S CELL PHONE
N=47
Survival = 94 %
(J Thorac Cardiovasc Surg 2005;129:1018)
EMBOLECTOMY FOR PE:
AHA PE Guidelines 2011

- **Massive PE:** catheter embolectomy and fragmentation or surgical embolectomy, if contraindications to fibrinolysis—is “reasonable”
- **Submassive PE:** severe RV dysfunction, or major myocardial necrosis, or worsening respiratory insufficiency—may "be considered"

(Circulation 2011; 123: 1788-1830)

BARD RECOVERY INFERIOR VENA CAVAL FILTER

INCREASING USE OF VC FILTERS

(Stein PD. Am J Med 2011; 124: 655-661)

IVC FILTERS FOR PE:
AHA PE Guidelines 2011

- Contraindications to anticoagulation
- Recurrent PE despite adequate anticoagulation
- Very poor cardiopulmonary reserve, “including those with massive PE”

(Circulation 2011; 123: 1788-1830)

IVC FILTERS AND IN-HOSPITAL MORTALITY

(Stein PD. Am J Med 2012; epub)

IVC FILTERS FOR PE:
AHA PE Guidelines 2011

- Contraindications to anticoagulation
- Recurrent PE despite adequate anticoagulation
- Very poor cardiopulmonary reserve, “including those with massive PE”

(Circulation 2011; 123: 1788-1830)

High VTE Recurrence Rate

(Prandoni. Haematologica 2007; 92: 199-205)

(N=1,626 DVT patients)
RISKS FOR RECURRENCE
• “Unprovoked”—e.g., long-haul travel
• Strong FH; PMH of VTE
• Lupus anticoagulant, protein C or S deficiency (Eur Heart J 2008; 29: 2276)
• Cancer
• Male (McRae S. Lancet 2006; 368: 371)
• Presentation with PE Symptoms (Eichinger. Arch Intern Med 2004;164: 92)

DOES HYPERCOAGULABILITY PREDICT RECURRENT VTE?
• Probably: lupus anticoagulant, protein C or S deficiency
• No Evidence: heterozygous Leiden or prothrombin gene mutation (European Heart Journal 2008; 29: 2276-2315)

OPTIMAL DURATION STRATEGY

Acute PE or DVT

Provoked

3-6 Months Rx

Considering past/family VTE history, gender, recanalization of leg veins on U/S, hypercoagulability, patient preference

Unprovoked

Gray Zone

Individualize Rx

Consider Lifelong Rx

(Gray Zone Unprovoked)

CHEST ACCP GUIDELINES 2012: DURATION OF RX
If provoked by surgery or a nonsurgical transient risk factor, anticoagulation for 3 months (Grade 1B). If unprovoked with low to moderate bleeding risk, we suggest extended anticoagulant therapy rather than 3 months (Grade 2B).

CHEST 2012; 141(2)(Suppl):e419S–e494S

CLOT TRIAL for cancer pts: Reduction in Recurrent VTE

Risk reduction = 52%
p-value = 0.0017

Lee et al. NEJM 2003; 349: 146

CHEST ACCP GUIDELINES 2012: DVT AND CANCER
We recommend extended anticoagulant therapy rather than 3 months of therapy (Grade 1B). We suggest LMWH over VKA therapy (Grade 2B).

CHEST 2012; 141(2)(Suppl):e419S–e494S
Venous thrombi: fibrin, platelets, red cells, leukocytes.
(Becker RC. NEJM 2012; 366: 2028)

RISK OF RECURRENT VTE: ASPIRIN VS. PLACEBO

Placebo: 43/197=11.2%/yr; Aspirin: 28/205=6.6%/yr

TAKE HOME MESSAGES
1. CTEPH and PTS are late effects of VTE.
2. Risk stratify to guide use of thrombolysis or (catheter) embolectomy.
3. Select a parenteral anticoagulant, and “bridge” to warfarin.
4. Alternatively, use rivaroxaban as oral monotherapy without a parenteral agent.
5. Thrombolysis and IVC filters appear to reduce mortality in unstable patients.

TAKE HOME MESSAGES
6. Role of thrombolysis in submassive PE remains uncertain.
7. The 10-year VTE recurrence rate is high after anticoagulation is discontinued: about 20% for “secondary” and 50% for “primary” VTE.
8. Venous thrombi contain activated platelets and proinflammatory mediators.
9. Aspirin appears to halve the rate of idiopathic VTE following 6-12 months of initial standard anticoagulation.

Which most completely describes pathophysiology leading to VTE?

a) Inflammation, hypercoagulability, endothelial injury
b) Red blood cell “sludging”
c) Factor V Leiden genetic mutation
d) Prothrombin gene mutation
e) Plasminogen activator inhibitor combined with acquired resistance to LMWH

Which most completely describes pathophysiology leading to VTE?

a) Inflammation, hypercoagulability, endothelial injury
Which most accurately describes rivaroxaban (versus LMWH/warfarin) for PE treatment?

a) Superior efficacy; noninferior safety
b) Superior efficacy; superior safety
c) Noninferior efficacy; noninferior safety
d) Noninferior efficacy; superior safety
e) Best used with a LMWH “bridge”

Which most accurately describes rivaroxaban (versus LMWH/warfarin) for PE treatment?

d) Noninferior efficacy; superior safety

Supplementary References
5. Stein PD. Outcome in stable patients with acute pulmonary embolism who had right ventricular enlargement and/or elevated levels of troponin I. Am J Cardiol 2010;106:558-563.