Acute Coronary Syndrome Management

HMS & BWH
Intensive Review of Internal Medicine
July 17, 2012

Marc S. Sabatine, MD, MPH
Chairman, TIMI Study Group
Associate Physician, Brigham and Women’s Hospital
Associate Professor of Medicine, Harvard Medical School

Disclosures
Research Grant Support through BWH: Abbott Diagnostics, Amgen, AstraZeneca, Bristol-Myers Squibb, Bristol-Myers Squibb / sanofi-aventis
Joint Venture, Daiichi-Sankyo, GlaxoSmithKline, Merck, Nanosphere, Roche Diagnostics
Scientific Advisory Boards: Amgen, Joint Venture, GlaxoSmithKline, Merck, Pfizer, Sanofi-Aventis

STEMI: Immediate Reperfusion Therapy

When to do it:
• Within 12 hrs of sx onset, or
• 12-24 hrs after sx onset if clin/ECG evidence of ongoing ischemia

How to do it:
• Fibrinolysis (tenecteplase, reteplase, IPA, or SK) w/in 30 mins
• Primary percutaneous coronary intervention (PCI) w/in 90 mins
• Primary PCI preferred to fibrinolysis if:
 • Experienced team w/in 90 min of 1st med contact (120 min if presenting to non-PCI capable hospital)
 • High-risk STEMI (shock, congestive heart failure)
 • Late presentation (eg, >3 hrs from sx onset)
 • Contraindication to fibrinolytic
 o Absolute: prior ICH; intracranial neoplasm, aneurysm, or AVM; stroke or head trauma w/in 3 mos; active internal bleeding or diathesis; suspected AoD
 o Relative: severe HTN; stroke; prolonged CPR; recent bleed, surgery or trauma; noncompressible vasc puncture; pregnancy; current use of anticoagulants

What To Do after Fibrinolysis?
• If it fails (persistent STE <50% resolution) or sx, development of shock, evidence of infarct-related artery reocclusion): PCI
• If it succeeds:
 • Non-invasive ischemia testing (ie, stress test), OR
 • Transfer high-risk pts w/in 3-24 hrs for elective PCI
 (high-risk = anterior MI, inferior MI w/ low EF or RV infarct, extensive STE or LBBB, HF, hypotension or tachycardia)

 • 1059 high-risk STEMI
 Pts Rx’d with lytic
 • Rand. to immed transfer w/ PCI w/in 6 h or rec for cath w/in 2 wks (earlier if needed)

NSTEMI Management Strategy: Invasive vs. Conservative

INVASIVE (12-24 hrs)
PCI / CABG

CONSERVATIVE (Select invasive)
Stress test
Ischemia
Stress Rx

Med Rx

Med Rx
Invasive vs. Conservative Strategy

INVASIVE
Routine angiography and revascularization as indicated, within 12-24 hours if high-risk, within 48 hours if low-risk.

1. Refractory angina
2. Hemodynamic or electrical instability
3. ↑ risk of ischemic events
 a. Recurrent angina, angina at rest, or with low-level activity
 b. High-risk features on stress test
 c. Troponin
 d. ST depressions
 e. ↑ TIMI or GRACE risk score
 f. Heart failure, low EF, or worsening MR
 g. PCI in past 6 months, prior CABG

CONSERVATIVE
Coronary angiography and revascularization only if significant stress-test induced ischemia or recurrent spontaneous ischemia.

1. Low TIMI or GRACE Risk score
2. Patient or physician preference in absence of high-risk features

INV vs. CONS Meta-Analysis

<table>
<thead>
<tr>
<th>Event Rate</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>1.8 (1.14-2.50)</td>
<td>0.007</td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>3.7 (1.94-6.37)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Mehta et al., JAMA 2005; 293: 2908

TIMACS
3031 Patients with NSTEMI
Cath within 24 hours (median 14 hours) or >36 hours (median 50 hours)

Determinants of Myocardial O2 Supply & Demand

- Supply: Oxygen carrying capacity, coronary blood flow
- Demand: Wall stress (P<2/h), heart rate, contractility

↓ Myocardial O2 Demand

- Wall stress
- Blood pressure
- Coronary vasospasm

- β-BLOCKERS
 - ↓ HR
 - ↓ contractility
 - ↓ BP
 - ↓ arrhythmias

- CALCIUM CHANNEL BLOCKERS
 - agent specific
 - ↓ HR
 - ↓ contractility
 - ↓ BP
 - venodilation

COMMIT: Effects of METOPROLOL on Death

45,852 Patients p/w AMI within 24 hrs; ASA; lytic therapy (~1/2)
Randomized to metoprolol (5 mg IV q 5 min x 3, 50 mg PO q 6 hr x 4, then 200 mg XL qd) or placebo

<table>
<thead>
<tr>
<th>Cause(s)</th>
<th>Metoprolol (22,929)</th>
<th>Placebo (22,923)</th>
<th>Odds ratio & 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY DEATH</td>
<td>1774 (7.7%)</td>
<td>1797 (7.8%)</td>
<td>1.1 (0.95-1.26)</td>
</tr>
<tr>
<td>Shock</td>
<td>406 (2.2%)</td>
<td>384 (1.7%)</td>
<td>1.2 (0.94-1.54)</td>
</tr>
<tr>
<td>Other causes</td>
<td>890 (3.9%)</td>
<td>915 (4.5%)</td>
<td>0.9 (0.74-1.13)</td>
</tr>
<tr>
<td>Metop. better</td>
<td>43% SE 4</td>
<td>46% SE 4</td>
<td></td>
</tr>
<tr>
<td>Placebo better</td>
<td>39% SE 4</td>
<td>40% SE 4</td>
<td></td>
</tr>
</tbody>
</table>

Beta-Blockers in ACS

Class I
Oral βB should be initiated in the first 24 hrs if w/o any of following:
1) heart failure,
2) low output state,
3) ↑ risk for cardiogenic shock, or
4) other relative contraindications

Class IIA
IV βB at time of presentation if HTN and w/o any of following:
1) heart failure,
2) low output state,
3) ↑ risk for cardiogenic shock, or
4) other relative contraindications

Risk factors for cardiogenic shock (the greater the number of risk factors present, the higher the risk) are age >70 yrs, SBP <120 mm Hg, HR >110 bpm or <60 bpm, and T time since onset of symptoms.

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin

Antithrombotics

- Antiplatelet drugs
 - COX Inhibitors: aspirin
 - P2Y₁₂ ADP Receptor Blockers: clopidogrel, prasugrel, ticagrelor
 - Glycoprotein IIb/IIIa Inhibitors: abciximab, eptifibatide, tirofiban

- Anticoagulants
 - Unfractionated heparin (UFH)
 - Low-molecular-weight heparins: enoxaparin, dalteparin
 - Pentasaccharide blockers: fondaparinux
 - Direct thrombin inhibitors: bivalirudin
Clopidogrel Variability & Recommendations

- Platelet function testing & genetic testing
 - Evidence base insufficient to recommend routine use
 - May be considered in high-risk pt if would change Rx
- PPI
 - Recommended if h/o UGIB
 - Appropriate if risk factors for GIB (advanced age, concurrent use of a/c, steroids, or NSAIDs, H pylori)
 - Routine use not recommended if low risk
- Tests are available to identify a patient's CYP2C19 genotype and can be used as an aid in determining therapeutic strategy. (1,2,5)
- Consider alternative treatment or treatment strategies in patients identified as CYP2C19 poor metabolizers. (2,3,5,1)
- Reduced effectiveness in impaired CYP2C19 function: Avoid concomitant use with drugs that inhibit CYP2C19 (e.g., omeprazole, (5,1)

JACC 2010;16:3051-66; Plavix Label 3/12/2016

Prasugrel vs. Clopidogrel: Speed of Onset and Non-responders

Prasugrel: more potent than clopidogrel, fewer "non-responders", irreversible (dic 7 days before surgery)

F DA

JACC 2010;16:3051-66; Plavix Label 3/12/2016
Ticagrelor Pharmacodynamics

Ticagrelor: more potent than clopidogrel, fewer "non-responders", reversible

Prasugrel
Clopidogrel

13,608 Patients with ACS and Planned PCI Randomized to Prasugrel (60/10) vs. Clopidogrel (300/75)

CV Death / MI / Stroke
TIMI Major
Non-CABG Bleeds

Risk (%)

HR 0.84
(95% CI 0.77-0.92)
P=0.003

Prasugrel
Clopidogrel

HR 1.32
(1.03-1.68)
P=0.03

Greater benefit in patients with high bleeding risk:

Prasugrel
Clopidogrel

Major bleeding
(95% CI) 0.75-1.03
P=0.18

PLATO major bleeding
TIMI major bleeding
Non-CABG major bleeding
Red cell transfusion
PLATO major
TIMI bleeding
Fast bleeding

Risk (%)

0.3 0.3

0.2 0.2

7.3 7.2

8.9 8.9

=0.025

Glycoprotein IIb/IIIa Inhibitors

- Potent intravenous antiplatelet drugs
- Typically consider giving at time of PCI
- UA/NSTEMI
 - INV Strategy: give at time of PCI; upstream use (ie, prior to angiography) w/o clear efficacy and increases risk of bleeding
 - CONS Strategy: usually no role unless Pt goes for PCI
- STEMI
 - Primary PCI: give at time of PCI (not before)
 - Fibrinolysis: CONTRAINDICATED
Search for Better Anticoagulants

Anticoagulants in UA/NSTEMI

- **INVASIVE STRATEGY**
 - UFH
 - Enoxaparin (LMWH)
 - Bivalirudin
 - Fondaparinux
 - **Discontinue after uncomplicated PCI**

- **CONSERVATIVE STRATEGY**
 - UFH (Rx for 48 hrs)
 - Enoxaparin (LMWH) (Rx until end of hosp, up to 8d)
 - Fondaparinux
 - [NOT Bivalirudin]

Enoxaparin vs. UFH Summary

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>ENOX</th>
<th>UFH</th>
<th>ARR</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/MI at 30 d in all 6 RCTs</td>
<td>10.1</td>
<td>11.0</td>
<td>0.91</td>
<td>(0.83-0.99)</td>
</tr>
<tr>
<td>All patients</td>
<td>6.0</td>
<td>9.4</td>
<td>1.4</td>
<td>(0.70-0.94)</td>
</tr>
<tr>
<td>No PreRx</td>
<td>8.8</td>
<td>8.5</td>
<td>-0.3</td>
<td>(0.77-1.40)</td>
</tr>
<tr>
<td>D/MI/RI at 7 d in A to Z (TIMI 21)</td>
<td>7.7</td>
<td>10.6</td>
<td>2.9</td>
<td>(0.51-0.98)</td>
</tr>
<tr>
<td>Invasive</td>
<td>4.7</td>
<td>4.5</td>
<td>-0.2</td>
<td>(0.89-1.30)</td>
</tr>
<tr>
<td>Conservative</td>
<td>7.5</td>
<td>5.3</td>
<td>-2.2</td>
<td>(1.03-2.05)</td>
</tr>
</tbody>
</table>

Bivalirudin in NSTEMI ACS

- **Primary End Point (ITT)**
 - Death or Nonfatal MI

- **Relative Risk**
 - UFH: 0.83 (0.77 to 0.90)
 - Enoxaparin: 0.99 (0.95 to 1.03)

Recommendations

- **C**
 - UFH x 48 hrs

- **B**
 - Enoxaparin (adj for age & CrCl) x dur of hosp or 8 days
 - Fondaparinux x duration of hosp or 8 days
Recommendation
Anticoagulant Therapy w/ PCI

- UFH
- Bivalirudin

If at high risk of bleeding, bivalirudin is reasonable

Bivalirudin vs. UFH + GPI for 1° PCI

Stone GW et al. for the HORIZONS-AMI Investigators. NEJM 2008;358:2218-28

Beta-Blockers: Clinical Data

1884 Patients 1-4 weeks after acute MI
Randomized to β-blocker vs. placebo

- 48% risk reduction P=0.0001
- 28% risk reduction P=0.0006

PROVE IT – TIMI 22

4162 patients hospitalized w/in prior 10 d for ACS

- Pravastatin 40 mg (avg achieved LDL = 95 mg/dl)
- Atorvastatin 80 mg (avg achieved LDL = 62 mg/dl)
- 16% RR (P = 0.005)

Cannon et al. NEJM 2003; 350: 1495

ACE Inhibitors Post-MI with EF <40% but asx

- 19% Reduction in Mortality P = 0.019

ACE Inhibitors in All Acute MI

Greater apparent benefit in anterior STEMI than in inferior STEMI or NSTEACS

Aldosterone Antagonists

6632 patients with recent MI, heart failure, and ejection fraction <40%

Discharge Checklist

Risk Factor Modification
1. Low chol (<200 mg/dl) and low fat (<7% saturated) diet
2. LDL goal <70 mg/dl
3. HDL >40 mg/dl
4. BP <140/90, <130/80 if DM or CKD
5. Smoking cessation
6. If DM, HbA1c <7%
7. Exercise (≥30 min 3-4 x per wk)
8. BMI goal 18.5-24.9 kg/m²

Medical Therapy
1. Aspirin 81-162 mg/d for life
2. ADP Receptor blocker for 12 mos
3. β-Blocker
4. Statin high-intensity lipid-lowering (eg, atorva 80 mg qd)
5. ACEI if CHF, EF<0.40, HTN, DM; 4-6 wks or at least until hosp d/c in all STEMI; 7 in all CAD
6. Aldo antag if EF <40% & CHF
7. Nitrates standing if sx, prn for all

Question #1

A 62 year old man presents approximately 2 hours after the onset of severe substernal chest pain. A 12-lead ECG reveals ST-elevation V1-V4. The hospital does not have ready access to a cardiac catheterization laboratory, so fibrinolytic Rx is chosen.

In addition to tenecteplase and aspirin, you should also:

a. UFH and low-level stress test before discharge
b. Fondaparinux and transfer for immediate cath
c. Clopidogrel 300 mg load, then 75 mg daily + enoxaparin and transfer for cath
d. Clopidogrel 600 mg load + bivalirudin and low-level stress test before discharge
e. Abciximab + unfractionated heparin and transfer for cath

Question #2

A 67 year old diabetic woman presents with substernal chest pain at rest for 15 minutes that, after beta-blocker and nitrates, has partially but not completely resolved. A 12-lead ECG reveals inferior ST-segment depressions. Cardiac troponin is elevated.

In addition to ASA, the most appropriate treatment strategy would be:

a. UFH, GP 2b/3a inhibitor, stress test in 24-48 hrs
b. Clopidogrel, bivalirudin, stress test in 24-48 hrs
c. Clopidogrel, fondaparinux, cardiac catheterization that day
d. Enoxaparin, cardiac catheterization in 48 hrs
e. UFH, cardiac cath w/in 12-24 h, prasugrel ± GP 2b/3a if PCI
Key References

- Wright et al. *Circulation* 2011;123:2022-60