Take-home messages in Hematology

Intensive Review in Internal Medicine
July 16, 2012
Nancy Berliner, M.D.
BWH Hematology Division

Nothing to disclose

Anemia

Morphological Classification of Anemias

<table>
<thead>
<tr>
<th>Microcytic</th>
<th>Normocytic</th>
<th>Macrocytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV < 80</td>
<td>MCV 80-95</td>
<td>MCV > 95</td>
</tr>
</tbody>
</table>

- Iron deficiency
- Anemia of chronic dx
- Thalassemias
- Sideroblastic anemia

- Renal failure
- Anemia of chronic dx
- Hypothyroidism
- Blood loss
- Aplastic anemia
- Hemolysis

- Vit B12 def
- Folate def
- Hypothyroidism
- Myelodysplasia
- Alcohol liver Dx
- Blood loss

Evaluation of Anemia

- **Low retic index**
 - Low MCV
 - Iron deficiency
 - Anemia of chronic dx
 - Thalassemias
 - Renal failure
 - Aplastic anemia
 - Hypothyroidism
 - B12/folate deficiency
 - MDS
 - Alcohol liver disease

- **Normal MCV**
 - Hypothyroidism
 - EPO deficiency
 - Aplastic anemia
 - MDS
 - Alcohol liver disease

- **High MCV**
 - Hemolytic anemia
 - Blood loss

Anemia of Chronic Inflammation

- Contributed to by - iron trapping in macrophages
- ↓ iron absorption from GI tract

- IL-6 induction of **Hepcidin** is central to etiology
Topics in Anemia

Diagnosis and Treatment of Iron Deficiency
- Differentiating Fe Deficiency – High TIBC, low ferritin
- Soluble transferrin receptor – normal in ACI
- Bone marrow iron – normal in ACI

Differentiating folate vs B12 deficiency
- ↑ Methylmalonic acid & neurological deficits in B12 def.
- Intrinsic factor Ab - ~99% specificity for pernicious anemia

Bone marrow iron
- normal in ACI

Soluble transferrin receptor
- normal in ACI

Hemolytic Anemias & Hemoglobinopathies
- Hemolytic anemias - ↑LDH, ↑ retic count
- Spherocytes – AIHA or hereditary spherocytosis
- Schistocytes – microangiopathic hemolytic anemia
- Indications for exchange blood transfusion in SCD
- Stroke or Acute chest syndrome
- Diagnosis and Treatment of PNH
 Treatment: with monoclonal Ab Eculizumab

Autoimmune Hemolytic Anemia

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Warm AIHA</th>
<th>Cold AIHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Coombs</td>
<td>IgG or IgG & C3</td>
<td>C3 only</td>
</tr>
<tr>
<td>Antibody</td>
<td>IgG</td>
<td>IgM</td>
</tr>
<tr>
<td>Eculizumab</td>
<td>Methylxop, Penicillin, Procainamide; leukemia, lymphoma</td>
<td>Quinidine, Paroxys. cold hemoglobinuria, lymphoma, Mycoplasma</td>
</tr>
<tr>
<td>Treatment</td>
<td>Steroids, Rituxan, splenectomy</td>
<td>No role for steroids Warm pt, Cytoxan</td>
</tr>
</tbody>
</table>

Paroxysmal Nocturnal Hemoglobinuria
- Acquired mutations of PIG-A gene → loss of glycosylphosphatidylinositol (GPI) anchor on RBCs, WBC & platelets
- GPI-anchored proteins include:
 - Membrane inhib of reactive lysis (MIRF, CD59)
 - Decay Accelerating Factor (DAF, CD55)
- MIRF & DAF protect against c⁻mediated lysis
- Resultant unrestricted c⁻mediated lysis of RBCs

Megaloblastic Anemia
- Caused by Vitamin B₁₂ or Folate deficiency
- Hypoproliferative – low retic index
- Macro-ovalocytes
- hypersegmented neutrophils (>5 lobes)
- Intrinsic factor (IF) Abs – Pernicious anemia
- Drugs – methotrexate, pentamidine, dilantin, triamterene, pyrimethamine

Eculizumab
- Recombinant humanized monoclonal Ab binds to complement protein C5 inhibiting its cleavage into C5a and C5b, which prevents the generation of the terminal complement complex C5b-9.
- Inhibits formation of Membrane Attack Complex responsible for intravascular hemolysis in PNH.
Treatment of Sickle Cell Disease

Rx of Bone pain crisis – Fluid repletion and liberal pain medication as needed

Rx to prevent frequent crises – Hydroxyurea

Indications for Exchange Blood Transfusion
- Impending Acute Chest Syndrome
- Stroke-in-evolution/TIA
- Severe unrelenting bone pain crisis with end organ deterioration

α-thalassemia (Quantitative Defect)

- Absent or ↓ production of α chains of hemoglobin

<table>
<thead>
<tr>
<th>Locus Defect</th>
<th>Nomenclature</th>
<th>Clinical manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>αα/α−</td>
<td>α-thal trait</td>
<td>asymptomatic</td>
</tr>
<tr>
<td>α−/α− or αα/−</td>
<td>α-thal minor</td>
<td>little to no anemia</td>
</tr>
<tr>
<td>α−/−</td>
<td>α-thal HbH</td>
<td>moderate hemolysis, transfusions in adulthood</td>
</tr>
<tr>
<td>−/−</td>
<td>α-hydrops fetalis</td>
<td>death in utero</td>
</tr>
</tbody>
</table>

β-thalassemia (Quantitative Defect)

- ↓ or absent production of β chains of hemoglobin
- Have low MCV and ↑HbA2

<table>
<thead>
<tr>
<th>Clinical Nomenclature</th>
<th>Clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>β- thal major (Cdiey’s Anemia)</td>
<td>severe anemia, ↑↑↑HbF, ‘chipmunk facies’ transfusion dependent for life.</td>
</tr>
<tr>
<td>β- thal intermedia</td>
<td>mod. anemia, non-transfusion dependent</td>
</tr>
<tr>
<td>β- thal minor</td>
<td>mild or no anemia, ↑RBC count</td>
</tr>
</tbody>
</table>

β-thalassemia (Quantitative Defect)

- Due to abnormality of the integral proteins underlying the RBC membrane
- Loss of RBC membrane in the spleen → spherocytes
- Chronic premature hemolysis → early gall stones
- >65% are autosomal dominant – (+) family hx
- MCHC ≥ 39

Diagnosis : Increased osmotic fragility

Treatment : Folic acid, Splenectomy - limits hemolysis

Hereditary Spherocytosis

- Due to abnormality of the integral proteins underlying the RBC membrane
- Loss of RBC membrane in the spleen → spherocytes
- Chronic premature hemolysis → early gall stones
- >65% are autosomal dominant – (+) family hx
- MCHC ≥ 39

Diagnosis : Increased osmotic fragility

Treatment : Folic acid, Splenectomy - limits hemolysis

Risk Factors for VTE

<table>
<thead>
<tr>
<th>Transient/Provoked</th>
<th>Persistent</th>
<th>Idiopathic/Unprovoked</th>
</tr>
</thead>
</table>
| Surgery | Obesity | ????
| Trauma (major trauma or lower-extremity injury) | Chronic Medical Illnesses | High FVIII, Acquired APCR |
| Acute medical illness | Cancer and its therapy | High FIX, XI |
| Immobilization | Inflammatory bowel disease | |
| Estrogen-containing contraceptives or hormone replacement therapy | Nephrotic syndrome | |
| Pregnancy/puerperium | Myeloproliferative neoplasms/PNH | |
| HIT | Paralysis | |
| Prolonged air travel (operationally manage as idiopathic) | | |
VTE Risk Factor Model

- **Intrinsic Thrombosis Risk**
 - Genes
 - Anticoagulant deficiencies
 - Antithrombin 20-fold
 - Protein S 10-fold
 - Protein C 10-fold
 - Prothrombin 3-fold
 - Factor V Leiden 3-8 fold
 - Triggering Factors
 - Estrogens
 - Pregnancy
 - Surgery
 - Immobilization
 - Inflammation
- **Acquired Risk Factors**
 - Age
 - Previous VTE
 - Cancer
 - Obesity
 - LAC

Prophylaxis

Thrombosis Threshold

Clinical Clues for Thrombophilias

- Age of onset <50
- Recurrent thrombosis
- Positive family history in 1st degree relative
- Unusual location/site

Who to Test?

- **Yes**
 - VTE at age <50 with positive family history (1st degree relatives)
 - Cerebral venous thrombosis
 - Portal/mesenteric vein thrombosis (r/o MPD, PNH)
 - Pregnancy loss (2nd and 3rd trimester)
- **Reasonable**
 - VTE in association with OCPs/HRT or pregnancy
- **No**
 - Patients > 50 with first spontaneous VTE
 - VTE in patients with active cancer
 - Elderly patients with postoperative VTE
 - Retinal vein thrombosis
 - Arterial thrombosis (except paradoxical emboli)
 - Asymptomatic patients with no personal or familial hx of VTE
 - Women going on OCPs with no familial hx of VTE

APS

- True antiphospholipid syndrome has high risk of recurrence.
 - Updated Sapporo criteria 2006
- Long term anticoagulation in the setting of 1st unprovoked VTE event and persistently positive LA test results is required.
- Warfarin target range 2.0-3.0 sufficient

Duration of Anticoagulation

- **Provoked**
 - 3 months sufficient if risk gone
 - 1% risk per year of recurrence, not changed by 3 vs 6 months
- **Idiopathic**
 - Recurrence rate highest in first 2 years
 - 10% per year in 1st 2 years
 - 40% at 5 years

Unprovoked VTE

- Recent ISTH consensus considers an annual risk of VTE recurrence below 5% as acceptable to deny life-long anticoagulant therapy. (Kearon et al. JTH 2010)

How to determine risk?

- **D-dimer**
 - Elevated level associated with increased recurrence
 - Measure at end of initial duration and one month after d/c

- **Residual vein thrombosis**
 - Persistent clot associated with increased recurrence
 - Continue anticoagulation until resolution

- **Clinical prediction scores**
 - Vienna nomogram, DASH score, others
DASH Score

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>D-dimer</td>
<td>+2</td>
</tr>
<tr>
<td>A</td>
<td>Age < 50 years</td>
<td>+1</td>
</tr>
<tr>
<td>S</td>
<td>Male Sex</td>
<td>+1</td>
</tr>
<tr>
<td>H</td>
<td>Hormone use at time of VTE</td>
<td>-2</td>
</tr>
</tbody>
</table>

In males, the score may range from 1 to 4
In females, the score may range from -2 to 3

Annualized recurrence rates

Requires prospective validation in large population

Summary

- The “hypercoaguable state” has a wide spectrum and reflects an accumulation of additive risk factors.
- Duration of anticoagulation depends on the risk of recurrent VTE.
 - Treatment of provoked VTE straightforward—short-term anticoagulation with minimal risk of recurrence.
 - Improved risk stratification will aid in determining duration of anticoagulation therapy for unprovoked VTE.
 - “Personalized” risk profiles and patient preference increasingly considered.
 - Alternatives to full intensity anticoagulation, such as ASA, or other non-anticoagulant based risk modification strategies may be identified in the future.

Oral Anticoagulants

- **-xaban** direct Xa inhibitor
- **-gatran** direct thrombin inhibitor
- **-paranux** indirect Xa inhibitor

Novel Oral Anticoagulants

- **Direct Factor Xa Inhibitors**
 - Apixaban
 - Edoxaban
 - Betrixaban

- **Direct Thrombin (IIa) Inhibitors**
 - Hirudin
 - Argatroban
 - Edesina
Novel Oral Anticoagulants

- **Dabigatran**: PRADAXA
 - FDA approved for afib Oct 2010
 - EMA: post ortho VTE ppx March 2008
 - Afib Aug 2011
- **Rivaroxaban**: XARELTO
 - FDA approved for post ortho VTE July 2011
 - FDA approved for afib Nov 2011
 - Canada and EMA > 3 years post ortho VTE ppx
 - EMA: afib and DVT treatment Dec 2011
- **Apixaban**: ELIQUIS
 - EMA approved post orth VTE prophylaxis May 2011

Antidote: PCC Results

- **Rivaroxaban**
 - PCC completely reversed INR back to baseline ($p < 0.001$)
 - PCC completely normalized endogenous thrombin potential ($p < 0.001$)
- **Dabigatran**
 - PCC did not correct elevated PTT
 - PCC did not correct elevated TT
 - PCC did not correct elevated ECT

Novel Oral Anticoagulants summary

Novel oral anticoagulants offer:
- Similar or improved efficacy and safety
 - Decreased ICH for AF but increased GI bleeds
- Pharmacologic advantages
- Ease of administration
- Outpatient management of DVT/PE without need for parenteral agents
- Intriguing possible uses
 - ACS
 - HIT

Bleeding Disorders

Bleeding Presentations

- Primary: vWF and pltS
 - Skin
 - Petechiae
 - Ecchymoses
 - Small cuts, shaving
 - Mucosal surfaces
 - Epistaxis
 - Immediately after trauma or surgery
 - Tonsils
 - Teeth
 - menorrhagia
 - medications

- Secondary: coag factors
 - Joints
 - Hemarthrosis
 - Deep soft tissue
 - Deep muscle hematomas
 - Large skin ecchymoses
 - Delayed after surgery
 - Circumcision
 - Deep hematoma disproportionate to degree of trauma
 - Initial hemostasis, bleeding hours after procedure

Assessment of hemostasis

- Patient history
 - Congenital vs acquired?
- Patient reporting of bleeding events very subjective
 - Location, duration and number of bleeds
 - Transfusions
 - Menstruation/childbirth
 - Packing, stitching, back to OR
 - Medications
- Family history
 - X-linked: hemophilia,
 - autosomal dominant: vWD
- Laboratory tests
Platelet Aggregation Studies

Platelet-rich plasma from patient

Epinephrine
ADP
Collagen
Arachidonate
Ristocetin (RIPA)

Platelet Function Studies

<table>
<thead>
<tr>
<th>Epineph</th>
<th>Collagen</th>
<th>ADP</th>
<th>Arach</th>
<th>Ristocet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Absent</td>
<td>Normal</td>
<td>Normal</td>
<td>Absent</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Absent</td>
</tr>
<tr>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Normal</td>
</tr>
<tr>
<td>Second</td>
<td>wave</td>
<td>normal</td>
<td>decreased</td>
<td>wave</td>
</tr>
<tr>
<td>absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disorder

- vWD
- Glanzmann's thrombasthenia
- Thrombocytopenia
- Storage pool disorders
- Signaling disorders
- Mutations: MPL, MHY19, WAS, RUNX1

Platelet Disorders

INHERITED
- Bernard-Soulier—gpl1b/IX/V
- Glanzmann’s thrombasthenia—gpl1b/llla
- Storage pool disorders
- Signaling disorders
- Mutations: MPL, MHY19, WAS, RUNX1

AQUIRED
- Normal platelet count
 - Drugs, uremia, myeloproliferative disorders, myelodysplastic syndrome, paraproteins
- Thrombocytopenia
 - ITP, collagen vascular disease, lupus anticoagulant, quinina/drugs, marrow suppression, splenic sequestration

Thrombocytopenia

- Immune Thrombocytopenia Purpura
- Thrombotic Thrombocytopenia Purpura
- DIC
- Drug Effect
- Primary Bone Marrow Disorder
- Pseudo-thrombocytopenia

Heparin-Induced Thrombocytopenia

- > 50% fall in platelet count
- Usually 4 days after start of heparin
- Venous thromboembolism
- Re-exposure can occur after 1 day of heparin
- 90% of suspected cases are something else

Pathogenesis of HIT

- Heparin-PF-4 antibody complex
- Only complexes with IgG are pathogenic
- Bind to platelet Fc gamma IIa receptor and cause platelet activation
- Immunogenicity UFH >> Low Mr heparin >> fondaparinux
- 15% --- <1% --- ? (several cases)
Fibrin stabilizes platelet plug

Coagulation Cascade Screening Tests

aPTT PT TT

Coagulation Factor Deficiencies

INHERITED
- Hemophilia A or B most common
- Factor XI, Factor VII, Factor XIII*
- All the rest

ACQUIRED
- Inhibitors
 - Usually to FVIII, rarely vWF, other factors
- Drugs
- Liver disease
- Paraproteins
- Tumors, vascular anomalies

Hemophilia Treatment

FVIII and FIX Treatment
- Minor procedures or bleed (Scrapes, cuts, bruising)
 - 30-50% for 1-2 days
- Moderate (Dental procedures, epistaxis, hematuria)
 - 50% for 2-7 days
- Major (CNS, major joint bleeds, major surgery)
 - 80-100% for first day, 60-100% for 7-10 days

Products for Treatment
- Recombinant products preferred
- Plasma derived products all undergo viral inactivation
 - Intermediate purity—contain vWF
 - High purity
- Plasma or cryo—avoid unless no alternative

Factor XI Deficiency

- Autosomal Transmission
- Higher prevalence in Ashkenazi population which may approach 1:1000
- Levels do not necessarily correlate with bleeding (patients may bleed with levels above 30%)
- Patients may present late in life with no prior bleeding history

Factor VIII Inhibitors

- Congenital Hemophilia
 - develop in about 5 to 10% of children early in the course of treatment
 - low titer versus high titer responders
- Acquired Hemophilia
 - idiopathic, associated with malignancy, rheumatologic disease and pregnancy
 - soft tissue bleeding predominates
vWD Classification

Type I: autosomal dominant, **quantitative** decrease in vWF and **concordant** decrease in all functions

70-80% of vWD cases

Type III: homozygous recessive, almost no detectable vWF

Very Rare

Type II: Qualitative Abnormalities

A: decreased large mw multimers

10-15% of VWD

B: gain of function mutations, increased binding to gpIb

M: loss of function mutations, decreased gp1b binding

N: loss of function mutations, decreased FVIII binding

When to Use What

- **Desmopressin (ddAVP)**
 - Mild Type I disease for most procedures
 - Moderate Type I disease for minor procedures
 - Mild Type IIA disease for minor procedures
 - Intermediate purity factor concentrates
 - Moderate/severe Type I disease for major procedures
 - All other procedures in Type IIA patients
 - All significant procedures in Type IIB patients

vWD Treatment

- **DDAVP**
 - Release stored vWF from Weibel-Palade bodies
 - Onset of action within 30 mins
 - Tachyphylaxis

vWF containing concentrates: plasma derived pathogen-inactivated. Dose by FVIII or vWF.

- Humate-P
- Alphanate

- **Cryo**
 - Only as last resort

- **Recombinant vWF**
 - Clinical trials