Proteinuria, Hematuria and Glomerular Disease
Bradley M. Denker, MD
Associate Professor of Medicine
Harvard Medical School
Renal Division, Beth Israel Deaconess Medical Center
Chief of Nephrology, Harvard Vanguard Medical Associates
IRIM
July 15, 2012

Case
• 67 year old man - 4 week history of anorexia, nausea, lassitude, and pedal edema.
• Longstanding hypertension, well controlled with Lisinopril/hydrochlorothiazide.
• Type II DM x 5y controlled by diet
• Fenoprofen for osteoarthritis of the hip for the past 3 months.

Exam: BP 157/93mm, HR 72 bpm, JVP 8 cm; normal cardiac and pulmonary examinations; and 2+ pitting edema.
Urinalysis showed a specific gravity of 1.017, protein 4+, trace blood, and negative for glucose. Microscopic examination of the sediment showed 2-4 erythrocytes and and occasional granular casts.
Creat 1.0, 24h Urine with 7.7 gms, albumin 2.8g/dl. Serologies wnl
Ultrasound normal

Case
• The nephrotic-range proteinuria is most likely the result of:
 – A). Diabetic Nephropathy
 – B). Amyloidosis
 – C.) Systemic small vessel vasculitis
 – D.) Minimal change disease
 – E.) Hypertensive nephrosclerosis

Agenda
• Review of Renal Anatomy
 – (Vascular, Glomerular, Tubular)
• Proteinuria
 – Definitions and Measurement
 – Mechanisms; (Glomerular, Tubular, Overflow)
 – Management
• Hematuria
 – Renal vs Urologic
 – Evaluation
• Glomerular Disease
 – Nephrotic vs Nephritic Syndromes
Agenda

• Review of Renal Anatomy
 – (Vascular, Glomerular, Tubular)
• Proteinuria
 – Definitions and Measurement
 – Mechanisms; (Glomerular, Tubular, Overflow)
 – Management
• Hematuria
 – Renal vs Urologic
 – Evaluation
• Glomerular Disease
 – Nephrotic vs Nephritic Syndromes

Definitions/Measurement

Total Protein or Albumin

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Microalbuminuria</th>
<th>Proteinuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein</td>
<td><150 mg/day</td>
<td>30-300 mg/day</td>
<td>>300 mg/d</td>
</tr>
<tr>
<td>Protein/creat ratio</td>
<td><200 mg/g (<0.2)</td>
<td>>3.5</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td><30 mcg/mg</td>
<td>30-300 mcg/mg</td>
<td>>300 mcg/mg</td>
</tr>
<tr>
<td>Albumin/creat ratio</td>
<td><30mcg/mg</td>
<td>30-300mcg/mg</td>
<td>>300mcg/mg</td>
</tr>
</tbody>
</table>

Random Urines are Adequate!

Spot Urine Protein:Cr Concentration Ratio

Urine protein concentration varies throughout the day depending on hydration status:

[Prot]

0600 1200 1800 Midnight

Spot Urine Cr Concentration Ratio

Urine Cr concentration also varies throughout the day depending on hydration status:

[Cr]

0600 1200 1800 Midnight
Urine Protein:Cr Ratio

Average Creatinine Excretion/d = 1gm so UP/Creat~24h excretion in gms

Transient Proteinuria
- Usually 1+ on dipstick
- Absent on repeat determinations
 - 4% normal males
 - 7% normal females
 - Exercise, fever
 - 10% of pts during acute illness

Orthostatic Proteinuria
Proteinuria during ambulation or exercise that is absent when patient is in recumbent posture
- 2% to 5% or adolescents; rare > age 30
- Renal biopsy: 92% normal
- Hemodynamic alterations in kidneys with subtle glomerular structural abnormalities

Split urine collection:
- 16-hr ambulatory
- 8-hr recumbent < 50 mg protein

Proteinuria With Intrinsic Renal Disease

Nephrotic-Range Proteinuria
- > 3.5 g protein per day
 - Usually predominantly albumin and pathognomonic of glomerular disease
- Often associated with nephrotic syndrome:
 - Edema
 - Hypoalbuminemia
 - Hyperlipidemia
 - Hypercoagulable state

Nephrotic Syndrome
- Primary glomerular disease
- Secondary glomerular disease

Proteinuria With Intrinsic Renal Disease
- Glomerular
 - Leaky barrier
 - Isolated proteinuria
 - Nephrotic syndrome
 - Defective reabsorption (damage)
 - Overflow R/O Myeloma
- Tubular

Overflow R/O Myeloma
Nephrotic Syndrome: Primary Glomerular Diseases

Generally require renal biopsy for diagnosis:
- Focal, segmental glomerulosclerosis
- Membranous nephropathy
- Minimal change disease
- IgA nephropathy
- Membranoproliferative glomerulonephritis
- Fibrillary glomerulonephritis

Secondary Glomerular Diseases

- Diabetes mellitus
- Amyloidosis
- Infections
 - HBV, HCV, HIV, syphilis, schistosomiasis
- Autoimmune disease
 - SLE, RA
- Drugs
 - NSAIDs, gold, penicillamine,

Natural History of Diabetic Nephropathy

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early DM</td>
<td>0-2</td>
</tr>
<tr>
<td>2</td>
<td>Structural Changes</td>
<td>2-5</td>
</tr>
<tr>
<td>3</td>
<td>Microalbuminuria</td>
<td>5-12</td>
</tr>
<tr>
<td>4</td>
<td>Overt Nephropathy</td>
<td>12-25</td>
</tr>
<tr>
<td>5</td>
<td>ESRD</td>
<td></td>
</tr>
</tbody>
</table>

Tubular and Overflow Proteinuria

- Tubular Proteinuria; Typically <1.5g/day
 - Comprised of Tamm-Horsfall and β2-microglobulin
 - Can be seen with any cause of tubular injury; hypertension, ischemia, advanced renal failure
- Overflow: Filtered load exceed reabsorptive capacity: light chains

Important Pearl: urine microalbumin and dipstick will NOT detect light chains.

Management of the Proteinuric Patient

- Treatment of underlying cause when appropriate (steroids+)
- Treatment of hypertension (<130/80)
- Antiproteinuric therapy (RAS Inhibition)
- Dietary management (Na restriction)
- Lipid management (target LDL<100)
- Control of edema

Recommendations for RAS Inhibitors in Proteinuric Patients

- Rate of decline in renal function correlates with the level of proteinuria
- Titrate up to maximum tolerated dose (twice the anti-hypertensive dose)
- Follow proteinuria as a surrogate endpoint
- Discontinue other antihypertensive agents if necessary
- Control hyperkalemia with diet, diuretics and/or resins
Agenda

- Review of Renal Anatomy
 - (Vascular, Glomerular, Tubular)
- Proteinuria
 - Definitions and Measurement
 - Mechanisms; (Glomerular, Tubular, Overflow)
 - Management
- Hematuria
 - Renal vs Urologic
 - Evaluation
- Glomerular Disease
 - Nephrotic vs Nephritic Syndromes

Hematuria: Definitions

- Urinalysis:
 - Microscopic – >2 rbcs/hpf
 - Gross – brown or red urine
 - Pigmented Sediment = Hematuria
 - Pigmented Supernatant = Myoglobin or Hemoglobin
- Renal vs Urologic: Urine Protein/Creat > 0.5 and/or abnormal UA

Hematuria with Intrinsic Renal Disease

- Vascular
 - Renal Artery Obstruction:
 - thrombosis, embolism, dissecting aneurysm, vasculitis
 - Renal Vein Obstruction:
 - thrombosis, compression
- Glomerular/Small Vessels
 - glomerulonephritis, vasculitis
 - HUS, TTP, DIC, Malignant HTN, SLE
- Tubular
 - interstitial nephritis; drugs, infection, immune

Urologic Evaluation

- Exclude: UTI, prostatitis, menses, exercise, stones
- Gross hematuria: if clots; urologic in origin
- Persistent hematuria (x3 or gross) associated with significant process in about 9% of patients
- Exclude urologic malignancy;
 - Cytology, CT scan, cystoscopy
- Hypercalciuria/uricosuria – 30-35% of children

Most common causes of renal hematuria without significant proteinuria:
- Thin basement membrane disease
- Alports syndrome
- IgA Nephropathy (wide spectrum; most common GN world wide)
 - gross hematuria common after mucosal infection

Agenda

- Review of Renal Anatomy
 - (Vascular, Glomerular, Tubular)
- Proteinuria
 - Definitions and Measurement
 - Mechanisms; (Glomerular, Tubular, Overflow)
 - Management
- Hematuria
 - Renal vs Urologic
 - Evaluation
- Glomerular Disease
 - Nephrotic vs Nephritic Syndromes
Glomerular Disease

- Predominantly proteinuria; consider causes of nephrotic syndrome (>3.5 g/d + other)
- Nephritic syndrome: Azotemia, hypertension, active urinary sediment (casts, dysmorphic rbc's, wbc's), proteinuria (usually <1.5 g/d; can be nephrotic range)
 - Consider causes of acute glomerulonephritis (next slides)
- Often will overlap!

RPGN - Rapidly Progressive Glomerulonephritis:
- Anti-GBM, Goodpasture's
- Pauci-Immune, ANCA+ (Wegener's, PAN) Syndromes
- Immune Complex:
 - Low complement: MPGN Pattern of Injury - Post-Infectious, SLE, Cryos
 - Normal complement - IgA, HSP, Fibrillary

Mimickers:
- HUS/TTP, Malignant Hypertension, Scleroderma crisis, Emboli

Diagnostic Approach to Proteinuria

- Confirm proteinuria; exclude transient, orthostatic
- 24 hr protein excretion
 - < 3.5 g/day
 - > 3.5 g/day
- Hematuria
 - Yes: Check UPEP
 - No: Consider
- Reduced GFR
 - Yes: Check UPEP
 - No: Consider
- Proteinuria > 1 g/day
 - Yes: Check UPEP
 - No: Consider
- Clues to systemic disease, CKD
 - Yes: Check UPEP
 - No: Consider

Significant intrinsic renal disease

Nephritic-range proteinuria

Work-up for glomerular diseases

Diagnostic Approach to Hematuria

- Proteinuria > 0.5 g/d
- Dysmorphic RBCs; RBC casts
 - Yes
 - No
- Pyuria, WBC casts
 - Yes: Urine Cult, Urine Eos
 - No: Urine Cytology
- Blood cultures, ASLO
- Anti-GBM/ANCA
- C3, C4, ANA
- Hep B, C, HIV
- Cryoglobulins
- Kidney Biopsy
- Renal Imaging: US, CT
 - Pos: Further Evaluation
 - Neg: Cystoscopy
- Pos: Bx and Eval
 - Neg: Monitor

Case

Summary: 68 yo with HTN, DM, OA and subacute onset of nephrotic syndrome, no hematuria and preserved GFR

- The nephrotic-range proteinuria is most likely the result of:
 - A). Diabetic nephropathy
 - B). Amyloidosis
 - C). Systemic small vessel vasculitis
 - D). Minimal change disease
 - E). Hypertensive nephrosclerosis
The nephrotic-range proteinuria is most likely the result of:
- A). Diabetic nephropathy
- B). Amyloidosis
- C.) Systemic small vessel vasculitis
- D.) Minimal change disease
- E.) Hypertensive nephrosclerosis

Case
Summary: 68 yo with HTN, DM, OA and subacute onset of nephrotic syndrome, no hematuria and preserved GFR

- The nephrotic-range proteinuria is most likely the result of:
 - A). Diabetic nephropathy
 - B). Amyloidosis
 - C.) Systemic small vessel vasculitis
 - D.) Minimal change disease
 - E.) Hypertensive nephrosclerosis

The Most Appropriate Next Steps Would be to:
1. Admit for urgent renal biopsy and IV solumedrol
2. Await serologies and admit for biopsy if positive
3. Start RAS inhibitor and repeat labs in 1-2 weeks
4. Obtain renal cat scan and refer to Urology
5. Obtain 24h urine for calcium and uric acid excretion

A 37 yo attorney of Chinese descent presents with 1d of gross hematuria that has now resolved. He describes a moderately severe diarrheal illness several days ago but no fever or chills. His PMH is otherwise unremarkable. Family history is negative for renal disease and he does not use NSAIDs.

- Exam shows healthy appearing male in NAD, BP 136/82mmHg, Pulse 82, Afebrile Exam is within normal limits without rash or edema.
- Labs notable for serum creat 1.1mg/dl (baseline 1.0, 1 year ago at physical), UA with TNTC rbc, dysmorphic, UP/Creat ~2. Serologic workup is pending.

The Most Appropriate Next Steps Would be to:
1. Admit for urgent renal biopsy and IV solumedrol
2. Await serologies and admit for biopsy if positive
3. Start RAS inhibitor and repeat labs in 1-2 weeks
4. Obtain renal cat scan and refer to Urology
5. Obtain 24h urine for calcium and uric acid excretion

This is IgA Nephropathy characterized by gross hematuria after mucosal infection. These patients do not necessarily need renal biopsy and control of proteinuria is important.

References